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Consider N points randomly distributed along a line segment of unitary length. A walker explores this
disordered medium, moving according to a partially self-avoiding deterministic walk. The walker, with
memory �, leaves from the leftmost point and moves, at each discrete time step, to the nearest point that has
not been visited in the preceding � steps. Using open boundary conditions, we have calculated analytically the
probability PN���= �1−2−��N−�−1 that all N points are visited, with N���1. This approximated expression
for PN��� is reasonable even for small N and � values, as validated by Monte Carlo simulations. We show the
existence of a critical memory �1=ln N / ln 2. For ���1−e / �2 ln 2�, the walker gets trapped in cycles and
does not fully explore the system. For ���1+e / �2 ln 2�, the walker explores the whole system. Since the
intermediate region increases as ln N and its width is constant, a sharp transition is obtained for one-
dimensional large systems. This means that the walker need not have full memory of its trajectory to explore
the whole system. Instead, it suffices to have memory of order log2 N.
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I. INTRODUCTION

While random walks in regular or disordered media have
been thoroughly explored �1�, deterministic walks in regular
�2� and disordered media �3–6� have been much less studied.
Here we are concerned with the properties of deterministic
walks in random media.

Given N points distributed in a d-dimensional space, a
possible question to ask is how efficiently these points can be
visited by a walker who follows a simple movement rule.
The search for the shortest closed path passing each point
once is the well-known traveling salesman problem �TSP�,
which has been extensively studied. In particular, if the point
coordinates are distributed following a uniform deviate,
results concerning the statistics of the shortest paths have
been obtained analytically �7–9�. To tackle the TSP, one im-
peratively needs to know the coordinates of all the points in
advance. Global system information must be at the walker’s
disposal.

Nevertheless, other situations may be envisaged. For in-
stance, suppose that only local information about the neigh-
borhood ranking of the current point is at the walker’s dis-
posal. In this case, one can think of several deterministic and
stochastic strategies to maximize the number of visited
points while trying to minimize the traveled distance.

Our aim is to study the way a walker explores the medium
following the deterministic rule of going to the nearest point

that has not been visited in the previous � discrete time
steps. We call this partially self-avoiding walk the determin-
istic tourist walk. In this dynamics, each trajectory depends
on the starting point, presents a transient time, and ends in
nontrivial cycles.

The paper presentation is arranged as follows. In Sec. II a
brief review of results obtained for the deterministic dynam-
ics proposed is presented. The model is then mapped into
two other physical systems. The first one is a particle with
constant energy moving in a quenched random rugged land-
scape. The second one is a walker moving in a random,
directed, and weighted graph. In Sec. III, we consider a
walker moving according to the deterministic tourist rule in
semi-infinite disordered media. First, we calculate exactly
the distribution of visited points, which allows us to justify a
very good approximation using a simple mean-field argu-
ment. Second, we propose an alternative derivation for this
distribution using the exploration and return probabilities,
which allows application of the tourist walk in finite disor-
dered media. This is done in Sec. IV, where we obtain the
percolation probability and show the existence of a crossover
in the walker’s exploratory behavior at a critical memory
�1=ln N / ln 2 in a narrow memory range of width �
=e / ln 2. This crossover splits the walker’s behavior into es-
sentially two regimes. For ���1−� /2, the walker gets
trapped in cycles, and for ���1+� /2, the walker visits all
the points. The calculated quantities have been validated by
Monte Carlo simulations. In this way we show that the
walker needs to have only a small memory �of order log2 N�
to explore the whole disordered medium. The percolation in
one-dimensional �1D� deterministic tourist walks shares
some common features with other systems, as shown in
Sec. V.
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II. PHYSICAL ANALOGIES TO THE DETERMINISTIC
TOURIST WALKS

Consider a walker who explores the medium following
the deterministic rule of going to the nearest point that has
not been visited in the previous � discrete time steps. Each
trajectory produced by this deterministic rule has an initial
transient of length t and ends in a cycle of period p. Both
transient time and cycle period can be combined in the joint
distribution S�,d

�N��t , p�. The deterministic tourist walk with
memory �=0 is trivial. Every starting point is its own near-
est neighbor, so the trajectory contains only one point. The
transient and period joint distribution is simply S0,d

�N��t , p�
=�t,0�p,1, where �i,j is the Kronecker delta function. With
memory �=1, the walker must leave the current point at
each time step. The transient and period joint distribution has
been obtained analytically for N�1 �10�. This memoryless
rule ��=1� does not lead to exploration of the random me-
dium, since, after a very short transient, the tourist gets
trapped in pairs of points that are mutually nearest neighbors.
Interesting phenomena occur when greater memory values
are considered. In this case, the cycle distribution is no
longer peaked at pmin=�+1, but presents a whole spectrum
of cycles with period p� pmin, with possible power-law de-
cay �11–13�. These cycles have been used as a clusterization
method �14� and in image texture analysis �15,16�.

It is interesting to point out that, for 1D systems, deter-
minism imposes serious restrictions. For any � value, cycles
of period 2�+1	 p	2�+3 are forbidden. Additionally, for
�=2 all odd periods but pmin=3 are forbidden. Also, the
heavy tail of the period marginal distribution S�,1

�N��p�
=�tS�,1

�N��t , p� may lead to often-visited large-period cycles
�11�. This allows system exploration even for small memory
values ���N�.

In Euclidean space, the partially self-avoiding determinis-
tic walk in one dimension occurs along a line segment,
where N points are drawn from a uniform probability den-
sity. The first point �site s1� is the starting point of the walk,
the second point �s2� is x1 apart from the first point, s3 is x2

apart from s2, and so forth until the last point. The dynamics
is that the walker goes to the nearest point that has not been
visited in the previous � steps. It is convenient to consider
the scaled distances xi�=xi /L, where L=�i=1

n xi is the length of
the line segment �see Fig. 1�.

Next we show that this partially self-avoiding determinis-
tic walk can be implemented in a regular lattice with N sites,

with lattice constant 1 /N, so that it can be viewed as a par-
ticle moving in a rugged potential landscape. To be compat-
ible with the deterministic tourist walk, the landscape must
be constructed as follows. Initially we associate a potential
Vi�

�+�=xi+1� and Vi�
�−�=xi−1� with the site i. We define the en-

ergy of the particle arriving at site i from the left as
Ei

�+����=� j=i−�
i xj� and from the right as Ei

�−����=� j=i+1
i+�+1xj�.

The direction flip condition is Vi��Ei��� �valid for both ±
cases�. Since the quenched random energy is not standard for

mechanical particles, we write Ei���= Ē+ �Ei− Ē�= Ē+
i,

where Ē can be thought of a constant particle energy and 
 is
the energy fluctuation. Next, we rescale the potential land-
scape as Vi=Vi�−
i, so that the flip condition simply reads

Vi� Ē. With this analogy we try to mimic the physical pic-
ture that, when the particle gets trapped within two potential

barriers larger than its energy Ē, a cycle is found. Notice that
the cycle period depends on the number of bumps between
the two bordering larger barriers, and that the landscape de-
pends on the memory �. This landscape is not fixed, since it
depends on the direction of the movement of the particle.
Also, the dimensionality d of the system affects the potential
heights, through the distances.

In the previous analogy we transformed the random dis-
tances to random potentials in a regular lattice. Now we con-
sider a more abstract description of the problem. Notice that,
to implement the dynamics of the tourist walk, the walker
only has to know the � next nearest neighbors from his
location. We stress that the walker does not have to know in
advance the location of the N sites; only local information is
required. Consider each point as a node of a graph. Each
node is connected to � neighboring nodes. These connec-
tions are directed and represent the movement from one
point to one of its � nearest neighbors. Also these connec-
tions are weighted, representing the neighborhood rank. This
random directed weighted �disordered� graph has a special
property: the number n of outgoing links of each node is
fixed ��n,��, but the number m of incoming links is variable
and depends on the dimensionality d of the underlying Eu-
clidean metric space used to construct the graph. The quan-
tity m follows a binomial distribution parametrized by d �17�.
The dynamics is implemented in this graph with a walker
going from one node to the one with the smallest link weight
that has not being visited in the previous � steps.

Our objective is to obtain a typical � value that allows the
tourist to visit all points. The same value of � makes all the
lattice sites accessible to the particle in the random rugged
landscape or, equivalently, all the graph nodes to the walker
in the network formulation.

III. SEMI-INFINITE DISORDERED MEDIA

A random static semi-infinite medium is constructed of
uncountable points that are randomly and uniformly distrib-
uted along a semi-infinite line segment with a mean density
r. The upper line segment of Fig. 1 represents this medium,
where the distances xk between consecutive points are inde-
pendent and identically distributed �i.i.d.� variables with ex-
ponential probability density function �PDF� g�x�=re−rx for

FIG. 1. Scheme showing the equivalence between a finite and a
semi-infinite disordered medium. Along the upper line segment the
points are generated using the random distances xk with exponential
probability distribution function. In the lower line segment, the
number of points �N� is fixed and normalized to its total length,
where zk are the normalized coordinates.

TERÇARIOL, GONZÁLEZ, AND MARTINEZ PHYSICAL REVIEW E 75, 061117 �2007�

061117-2



x�0 and g�x�=0, otherwise. In the following we analytically
obtain the statistics related to the deterministic tourist walk
performed on semi-infinite random media.

A. Distribution of the number of visited points

Here we obtain analytically the probability S�,si
��� �n� for a

walker, with memory � and moving according to the deter-
ministic tourist rule, to visit n points of a semi-infinite me-
dium. The exact result is obtained and this allows us to
justify a simple mean-field approach.

1. Exact result

Consider a walker who leaves from the leftmost point s1,
placed at the origin of the upper line segment of Fig. 1. The
conditions for the walker to visit n��+1 distinct points are
as follows.

�1� The distances x1, x2 , . . . ,x� may assume any value in
the interval �0; � �, since the memory � prohibits the walker
from moving backward in the first � steps, so that the first
�+1 points are indeed visited.

�2� Each of the following distances x�+1, x�+2 , . . . ,xn−1
must be smaller than the sum of the � preceding step dis-
tances, until the tourist reaches the point sn.

�3� The distance xn must be greater than the sum of the �
preceding ones, to force the walker to move back to the point
sn−�, instead of exploring a new point sn+1.

Once the walker has returned to the point sn−�, he �she�
may revisit the starting point s1, get trapped in an attractor, or
even revisit the point sn, but he �she� will not be able to
overpass the distance barrier xn between the points sn and
sn+1. Actually, no new points will be visited any longer.
Combining these conditions, the probability for the walker to
visit n distinct points is

S�,si
��� �n� = �

j=1

� �
0

�

dxjre−rxj �
j=�+1

n−1 �
0

�k=j−�
j−1 xk

dxjre−rxj

� �
�k=n−�

n−1 xk

�

dxnre−rxn. �1�

The difficulty of obtaining S�,si
��� �n� is that the n integrals are

chained and the integration procedure must start from the
rightmost factor. Applying the substitutions yj =e−rxj, with 1
	 j	n, one has

S�,si
��� �n� = �

j=1

n

I j , �2�

where the form of each functional I j depends on j:

I j =�
�

0

1

dyj for 1 	 j 	 � ,

�
ỹ j

1

dyj for � + 1 	 j 	 n − 1,

�
0

ỹ j

dyj for j = n ,

�3�

and each integration limit ỹ j =�k=j−�
j−1 yk links I j to the preced-

ing � integrals. This means that Eq. �2� must be evaluated

from In to I1. Notice that r has been eliminated, indicating
that the number of visited points does not depend on the
medium density.

We note that this calculation concerns dealing with the
powers of yj. Figure 2 illustrates the calculation of Eq. �2� for
the particular case �=3 and n=7. In this scheme, the rel-
evant quantities are the yj powers in the integrand, since all
y’s disappear after all integration levels are performed. The
integration process consists basically of three steps, where
each one of them represents a case of Eq. �3�.

�1� The first integral I7 �third case of Eq. �3�� is trivially
evaluated to its upper limit ỹ7, yielding the root node y4

1y5
1y6

1,
with all the integrand variables raised to the first power.
These powers are denoted as a1,a2 , . . . ,a�, where, in particu-
lar, a� is the power of the integrand of the current level.

�2� Each bifurcation level represents an integral from I6
to I4 �second case of Eq. �3��. �a� A unit is added to the
power a� and it becomes a new factor a�+1 at the denomi-
nator of the following level �this is just 	yady=ya+1 / �a+1��.
�b� For each bifurcation, in the upper fractions, the remaining
variables keep their powers and the new y is raised to 0. �c�
In the lower fraction, we sum a�+1 to each power of y and
the fraction sign is switched.

�3� The last level represents the integrals from I3 to I1
�first case of Eq. �3��, where a unit is added to all powers a1,
a2 , . . . ,a� and they become new factors in the denominator.

Generalizing the reasoning of the scheme of Fig. 2 for
arbitrary � and n, Eq. �2� may be written as the following
recursive formula:

S�,si
��� �n� = f��n,1��, n = � + 1,� + 2, . . . , � , �4�

with

y1
4y

1
5y

1
6
�
�
�
���

�
�
�
��

+
y0
3y1

4y1
5

2

−
y2
3y3

4y3
5

2

I6

�
���

�
���

�
��

�
��

+
y0
2y0

3y1
4

2·2

−
y2
2y2

3y3
4

2·2

−
y0
2y2

3y3
4

2·4

+
y4
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3y7
4

2·4
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���

���

���

���

��

��
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��

+
y0
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2y0
3
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2y2
3

2·2·2
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3
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FIG. 2. Calculation scheme for the chained integrals of Eq. �2�.
Here we have considered the example of �=3 and n=7. We focus
on the dynamics of the powers of y along the bifurcation path,
which leads to the recursive relation Eq. �5�.
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f��j,a�� = � f��j − 1,shift�a��� − f��j − 1,shift�a�� + �a� + 1� · 1��
a� + 1

if j � � + 1,

1
�
k=1

�

�ak + 1� if j = � + 1,

�5�

where 1� = �1,1 ,1 , . . . ,1� and a� = �a1 ,a2 ,a3 , . . . ,a�� are
�-dimensional vectors, shift�a��= �0,a1 ,a2 , . . . ,a�−1� is the
acyclic shifting of coordinates, and j is the integration level,
also used as the stop condition. Observe that the initial con-

dition 1� of Eq. �4� and the upper and lower cases of Eq. �5�
represent the third, second, and first cases of Eq. �3�, respec-
tively.

The minimum allowed cycle period in the deterministic
tourist walk is pmin=�+1 �11�. Once the memory � assures
that the walker visits at least �+1 points, the number of
extra visited points ne=n− pmin is the relevant quantity since
all the distributions S�,si

��� start at the same point ne=0, regard-
less of the � value.

Although the recursive relation of Eq. �5� is exact, it is not
efficient for algebraic treatment. Even for numerical calcula-
tion it presents several disadvantages. It is difficult to imple-
ment due to its recursive structure and the processing time
grows exponentially. Such exponential time dependence lim-
ited the plots of Figs. 3 and 4 to ne	30. The continuous
lines of Fig. 3 represent Eq. �4� for different values of �. As
one can see from this figure, a remarkable property is

S�,si
��� �ne = 0� =

1

2� �6�

for all �. This is exactly the probability to have a null tran-
sient and a cycle with minimum period pmin in the one-
dimensional tourist walk.

2. Mean-field approximation

The recursivity of Eq. �5� has been inherited from the
chained integrals of Eq. �2�. However, for ��1 a mean-field
approximation may be used to untie those integrals. It con-
sists of replacing the products ỹ j by their mean values.

To fully appreciate this mean-field argument, consider
first the distribution of a product of uniform deviates. Let y1,
y2 , . . . ,y� be � independent random variables uniformly dis-
tributed on the interval �0,1�. To obtain the PDF p�ỹ� of the
product ỹ=�k=1

� yk, let us apply the transformation w̃=−ln ỹ
=�k=1

� wk, where wk=−ln yk with 1	k	� are i.i.d. variables
with exponential PDF of unitary mean. Thus, the sum
w̃ follows a  PDF p�w̃�= w̃�−1e−w̃ /���. Since
�p�ỹ�dỹ � = �p�w̃�dw̃�, one obtains the distribution of ỹ: p�ỹ�
= �−ln ỹ��−1 /���, whose mth moment is �ỹm= �m+1�−�.

The above tools can be used due to the fact that all the
variables yj =e−rxj �applied to Eq. �1�� are i.i.d. for a uniform
deviate in the interval �0,1�. The first condition �1	 j	��
of Eq. �3� states that the variables y1, y2 , . . . ,y� may freely
vary from 0 to 1. Since for ��1 the product ỹ�+1=�k=1

� yk
has a small variance, it can be approximated by its mean
value �ỹ�+1=2−�.

Concerning the next product ỹ�+2=�k=2
�+1yk, the variables

y2, y3 , . . . ,y�+1 are not all i.i.d., because y�+1 has just been
constrained to the interval �2−� ,1�. However, for ��1, the
interval �2−� ,1� becomes close to �0,1�, allowing ỹ�+2 to be
also approximated by the mean value 2−�. This reasoning
can be inductively applied for the remaining integration lim-
its ỹ j. Thus, Eq. �3� is approximated to

FIG. 3. Distribution of ne for � varying from 1 to 9. Continuous
lines refer to exact form of Eq. �4� and dotted lines refer to approxi-
mate form of Eq. �8�.

FIG. 4. Return probability given by Eq. �12�, with � varying
from 1 to 9.
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I j ��
�

0

1

dyj for 1 	 j 	 � ,

�
2−�

1

dyj for � + 1 	 j 	 n − 1,

�
0

2−�

dyj for j = n .

�7�

Observe that these integrals are no longer chained and that
S�,si

��� �n� is still given by Eq. �2�, which leads to

S�,si
��� �n� � 2−��1 − 2−��n−�−1, �8�

with n=�+1,�+2, . . . ,�, and yields E�n�=2�+�, which
may be interpreted as the characteristic range of the walk,
and var�n�=22�−2�. The dotted lines in Fig. 3 represent this
approximation for 1	�	9.

B. Exploration and return probabilities

The purpose of the calculation of the exploration and re-
turn probabilities is twofold. It is an alternative argument to
obtain Eq. �8�, and these probabilities lead to simple argu-
ments to obtain the percolation probability for a finite disor-
dered medium.

1. Upper tail cumulative probability: An exact calculation

A similar argument to that used to obtain Eq. �4� may
be used to obtain the upper tail cumulative distribution
F�,si

��� �n�=�k=n
� S�,si

��� �k�, which gives the probability for the
walker to visit at least n points. The only modification is that,
once the walker has reached the point sn, he �she� can move
either backward or forward. Therefore, the rightmost integral
of Eq. �1� is no longer necessary, so

F�,si
��� �n� = �

j=1

n−1

I j , �9�

where each functional I j is given by Eq. �3�. The root node
of Fig. 2 is now set to 1 �or, equivalently, y4

0y5
0y6

0�, which
leads to

F�,si
��� �n� = f��n,0��, n = � + 1,� + 2, . . . , � , �10�

where 0� = �0,0 , . . . ,0� is the �-dimensional null vector and
f� is given by Eq. �5�. Observe that F�,si

��� �n� uses the same
recursive structure as Eq. �4�, but with a different initial con-

dition �0� instead of 1��. If Eq. �7� is used as an approximation
to evaluate Eq. �9�, one readily has

F�,si
��� �n� � �1 − 2−��n−�−1. �11�

The memory � assures that the walker, leaving from the
point s1, moves forward in the first � steps. In contrast, the
following steps are uncertain, since the walker may either
move forward and visit a new point or return and stop the
medium exploration. In analogy to the geometric distribu-
tion, it is useful to define the exploration probability q��j�
�taken as failure� as the probability for the walker to visit a
new point at the jth uncertain step.

Therefore, the return probability p��j� �taken as success�
for the jth uncertain step is equal to the probability for the
walker to visit exactly n=�+ j points conditioned on the fact
that he �she� has already visited n=�+ j−1 points. This
probability is given by

p��j� =
S�,si

��� �n = � + j�
F�,si

��� �n = � + j�
=

f��� + j,1��

f��� + j,0��
, �12�

where f� is given by Eq. �4�.
Figure 4 shows the behavior of p��j� for the first 30 un-

certain steps, with � varying from 1 to 9. One can observe
that for ��1 the return probability p��j� along the walk is
almost constant and equal its initial value p��1�=2−�. In this
way, one can verify empirically that for ��1 the return
probabilities can be taken as p�=2−� for all steps, and q�

=1−2−� can be taken for all exploration probabilities.
This empirical approximation for the return probability

can be justified analytically using Eqs. �8� and �11� in its
definition:

p��j� =
S�,si

��� �n = � + j�
F�,si

��� �n = � + j�
�

1

2� . �13�

For �=1, ne is numerically equal to the transient time t
�which does not mean that they are the same part of the
trajectory; the transient is the beginning of it and ne counts
the final points�, and in this case Eqs. �4�, �10�, and �12�
assume the simple exact closed forms S1,si

��� �ne�= �ne+1� / �ne

+2�!, F1,si
��� �ne�=1/ �ne+1�!, and p1�j�= j / �j+1�, which have

been previously found in Ref. �10�.

2. An alternative derivation

The approximate expressions for exploration and return
probabilities can also be obtained by analytical means
through a more direct derivation. Consider again the tourist
dynamics with a walker who leaves from the point s1, placed
at the origin of the semi-infinite medium.

The first �+1 points are indeed visited, because the
memory � prohibits the walker from returning. Thus, the
distances x1,x2 , . . . ,x� may assume any value in the interval
�0, � �.

The exploration probability q��1� for the first uncertain
step can be obtained by imposing that the distance x�+1 is
smaller than the sum x̃1=�k=1

� xk. Since the variables x1,
x2 , . . . ,x� are i.i.d. with exponential PDF, x̃1 has a  PDF.
Hence q��1�= �	0

�dx̃1r�x̃1
�−1e−rx̃1 /����	0

y1dx�+1re−rx�+1 =1
−2−�.

The exploration probability q��2� for the second uncertain
step is not exactly equal to q��1�. Since the distance x�+1

must vary in the interval �0, x̃1�, the variables x2, x3 , . . . ,x�+1

are not all independent, and consequently x̃2=�k=2
�+1xk has not

exactly a  PDF. However, for ��1, x�+1 rarely exceeds x̃1
�this probability is just P�x�+1� x̃1�=1−q��1�=2−�, mean-
ing that a weak correlation is present for ��1�. Therefore,
one can make an approximation assuming that x̃2 still fol-
lows a  PDF and considering q��2��q��1�. The same
arguments can be used for the succeeding steps.
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When the point sn is reached, the walker must turn back,
stopping the medium exploration. Once q��1� is taken for all
q�, the return probability is p�=1−q�=2−� and one has

S�,si
��� �ne�=2−��1−2−��ne, which is the result of Eq. �8�.

IV. PERCOLATION PROBABILITY FOR FINITE
DISORDERED MEDIA

The finite disordered medium is constructed of N points
whose coordinates zk are randomly generated in the interval
�0,1� following a uniform deviate as depicted in Fig. 1.

Numerical simulation results pointed out that the explora-
tion and return probabilities obtained for the semi-infinite
medium may also be applied to this finite medium. This is
not trivial, since all results for the semi-infinite medium have
been obtained assuming that the distances between consecu-
tive points are i.i.d. variables with exponential distribution.
Obviously the distances between consecutive points in the
finite medium are not i.i.d. variables, nor do they have expo-
nential distribution.

Nevertheless, the equivalence between these two media
can be argued as follows. On one hand, the abscissas of the
ranked points in the finite medium follow a � PDF �18�. On
the other hand, if one restricts the semi-infinite medium
length to the first N+1 distances and normalizes it to fit in
the interval �0,1�, then the abscissa of its kth ranked point is
zk=Uk / �Uk+Vk�, where Uk=x1+x2+ ¯ +xk and Vk=xk+1

+xk+2+ ¯ +xN+1. Figure 1 shows an example for N=7 nor-
malization. Since Uk and Vk have  PDFs, zk has a � PDF
�18�, as in the genuine finite medium. This normalization
does not affect the tourist walk, because in this walk only the
neighborhood ranking is relevant, not the distances them-
selves �11,13�.

The probability PN��� for the exploration of the whole
N-point medium can be derived by noticing that the walker
must move forward N− ��+1� uncertain steps and, when the
last point sN is reached, there is no need to impose a return
step. Therefore the percolation probability is

PN��� = q�
N−��+1� = �1 − 2−��N−�−1. �14�

It is interesting to note that the percolation probability relates
directly to the upper tail cumulative function as shown by
Eq. �11�. The difference between them is only in the inter-
pretation of the number of visited points N, but this can be
justified because of the normalization to the finite medium
discussed above.

Figure 5 shows a comparison of the evaluation of Eq. �14�
and the results of Monte Carlo simulations. From this figure
one clearly sees that the probability of full exploration in-
creases abruptly from almost 0 to almost 1.

From the analogy with a first-order phase transition, we
define the crossover point as the maximum of the derivative
of PN���, with respect to �. This implies that the second
derivative vanishes at the maximum d�

2 PN�����
1
�c� =0, leading

to a transcendental equation, which cannot be solved analyti-
cally to obtain �1

�c�. An estimated value of �1
�c� can be calcu-

lated considering N���1, Eq. �14� may be approximated
to PN���= �1−2−��N and, at the inflection point, one has

�1 = log2 N . �15�

A simple interpretation can be given to �1. It is just the
number of necessary bits to represent the system size N. Also
�1 is typically the size of the extra array needed to find a
given element in an ordered list by the QUICKSORT method
��19�, p. 333�. To evaluate the width of the crossover region,
use the slope of PN��� at �1, which results in ln 2/e, for all
N �see Fig. 5�. The crossover region has a constant width

� =
e

ln 2
� 3.92. �16�

On one hand, as N increases, the critical memory slowly
increases �as log2 N�, but its deviation is independent of the
system size, so that a sharp crossover is found in the thermo-
dynamic limit �N�1�. We stress that the approximations
employed lead to satisfactory results even for small N and �
values.

On the other hand, if one uses the reduced memory �̃
= ��−�1� /�1, the crossover occurs at �̃1=0, but now the
crossover width depends on the size of the system as
1/ log2 N.

V. CONCLUSION

Our main result is that the walker does not need to have
memory of order N to explore the whole medium; a small
memory �of order ln N� allows this full exploration. All the
exact results calculated here are in accordance with the lim-
iting case �=1 obtained in Ref. �10�. An interesting exact
result that we have obtained in the one-dimensional deter-
ministic tourist walk is that the probability to have a null
transient and a minimum cycle is 2−�, where ���1 is the
memory of the walker.

FIG. 5. Percolation probability for some fixed N values. Empty
circles are given by Eq. �14� and full ones represent numerical
simulations �M =100 000 maps for each N and � value�; error bars
are smaller than the symbol size. Continuous lines are plotted only
to guide eyes. Analytical results are satisfactory, when compared to
numerical simulation, even for small N and � values. The crossover
points �1 are given by Eq. �15�; they are weakly dependent on N
but all of them have the same constant dispersion ��4 �Eq. �16��.
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The crossover found here is similar to the one found in
the k-sat �satisfiability� problem �20–22�. In this problem one
considers N logical variables and a set of M AND clauses.
Each clause is a logical OR of k logical variables, where each
variable can be negated. The objective is to obtain a sat
solution, i.e., a realization of the N variables that satisfies the
M clauses. This problem can be mapped to a Hamiltonian
where the N Ising spins correspond to the logical variables;
the exchange coupling can take only values ±1 to represent
negation or not of a spin variable. The OR operation is
mapped to a product of k spins and the M AND clauses are
represented by a summation. The control parameter is �
=M /N, and a sharp k-dependent crossover at �k separates the
satisfiable and unsatisfiable regimes. For ���k, sat solutions
are obtained with times depending algebraically on system
size N, while for ���k no sat solutions can be found. The
worst case is ���k, where the sat solutions exist, but they
are obtained typically with times that increase exponentially
with N.

At �1 one can think of the appearance of the first walker
to cross the disordered medium with the deterministic tourist
walk. This crossing typically appears for walker memory of
the order of log N �23�. The disordered Erdös-Rényi random
graph and scale-free networks present weights associated
with their links. These weights are exponentially distributed,

and the mean value �model parameter� represents the disor-
der strength; for weak disorder, the optimal path connecting
any two nodes increases as ln N.

The distance constraints can be generalized to a
d-dimensional Euclidean space and possibly this calculation
scheme can be employed in this interesting situation.

Finally, the tourist rule can be relaxed to a stochastic
walk. In this case, the walker goes to nearer cities with
greater probabilities, given by a one-parameter �inverse of
the temperature� exponential distribution. This situation has
been studied for the nonmemory cases ��=0 �24� and 1
�25��, and we have detected the existence of a critical tem-
perature separating the localized from the extended regime.
It would be interesting to combine in the tourist walks both
stochastic movement �driven by a temperature parameter�
and memory ���.
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